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We investigate the nonlinear instability of a fluid layer flowing down a vertical wall and subjected to a
continuously imposed oscillatory pressure gradient. In each case the frequesfogscillation is fixed. The
flow instability is investigated numerically by means of the Benney equation with a space- and time-dependent
inhomogeneous term. The wave evolution is followed in space and time for different Reynolds numbers. It is
found that for a range of wave numbers near critical, saturation occurs only for frequensiaaller than a
critical value. For larger frequencies, the waves grow unboundedly everywhere. $toaller than that value,
subharmonics occur between the curves of criticality and subcriticality. An increase in Reynolds number leads
the instability to the region of subcriticality where wave subharmonics appear for all the frequencies investi-
gated in this paper. Larger Reynolds numbers give additional subharmonics until a magnitude is reached, at
which the flow becomes chaotic. As the frequency increases above a critical value, subharmonics are more
difficult to find in the supercritical regior}S1063-651X97)06701-9

PACS numbgs): 47.20.Ky, 47.35+i, 47.52+]

[. INTRODUCTION bifurcations that give saturation and hence permanent finite-
amplitude structures and the other corresponds to subcritical
The flow in liquid layers down walls has many industrial bifurcation and unlimitednonsaturatedgrowth of distur-
applications and has intrinsic complex behavior that is aances. In the latter case there appears to be blowup under
challenge to describe. Direct numerical simulation of the un-<ertain conditions in a finite time, indicating that the assump-
steady Navier-Stokes equations to analyze the thin-film dytion of small surface slopes is no longer valid. This illustrates
namics[1,2] is costly, but the results can be used as a benchthe danger in extrapolating the evolution equation solutions
mark for other approaches. In the temporal theory Joo antdeyond their limits of validity. However, Krisnamoorthy
Davis [3] showed via the Benney equation that all equili- et al.[2] find that there is quantitative agreement with direct
brated two-dimensional finite-amplitude waves on a verticahumerical simulations in such cases whéns smaller than
plate are unstable to three-dimensional disturbances. 4 or 5, a range of importance to studies of thin-film breakup
Some restrictions are important to simplify the governingand dryout[15]. WhenG is larger, such quantitative agree-
equations. The long-wavelength assumption by means of ment is lost.
small parametee is one of them, which implicitly says that Sivashisky and Michelsof16] showed that in the weakly
the surface slope everywhere is small. When this restrictiomonlinear limit the Benney equation reduces to the
is no longer satisfied, the integration of the evolution equaKuramoto-Sivashinsky(KS) equation, which displays no
tion must be stopped. Other restrictions are that the Reynoldslowup but whose surface amplitude is restricted to a small
numberG is of unit order and the surface tensioris large.
The applicability of these restrictions has been considered by
Frenkel[4]. F(S,T)
Benney[5], as well as those who followeg.g., Gjevik ‘ ‘ ‘
[6], Nakaya[ 7], Krishna and Lin 8], Pumiret al.[9], Chang }é
[10], Nakaya[11], Joo et al. [12,13, and Joo and Davis ‘ ’ ‘
[3,14], and Frenke[4]), derived a strongly nonlinear equa- —100 0 GT+100
tion valid for e—0, eG=0(¢), ando=0O(e 2). This equa-
tion has been used frequently as a device for studying these < ______ b == >
surface wave instabilities or coupled to other instabilities due
to thermocapillarity, evaporation, etsee e.g.[12,15). FIG. 1. Sketch of the spatial interval used in the numerical
When the Benney equation in two dimensions has beeanalysis of Eqs(4) and (9). F(&,7) is applied locally around the
integrated on spatially periodic domains, two ranges of waverigin. In this paper it has a bell shape with a maximum at the
numberk andG are found: one corresponds to supercriticalorigin, which oscillates in time.
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cies w. k. is the critical wave number for linear
instability andk; is the transition value separating
supercritical and subcritical bifurcations as found
by Gjevik[6]. The supercritical region is between
the line ofk, andks. The subcritical region is
below the lineks. Dots and crosses denote re-
gions of equilibration and blowup in our spatial
theory, respectively.
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fraction of the mean film thickness. Thus the Benney equa- Il. FORMULATION

tion, where it is valid, can give information unavailable from

the KS theory. tical plate. The fluid is Newtonian and of constant density.

If one wishes to describe only qu_antitatively waves atrpqo gas-liquid interface has a surface tensioand the gas
Reynolds numbers where many experiments on complex d%ounding the interface is considered passive.

namics are examined, say, 2G< 100, one must include Let the positivex andz directions be given by the flow
inertia at leading order. This can be done approximately Usgirection and normal to the plate into the liquid, respectively.
ing Karman-Pohlhausen metho@see e.g.[17-19). With Al quantities are taken to be independentyof
lubrication theory aSSUmptionS it has been found that all dis- In a fixed neighborhood in space, a force is apphed to the
turbances that grow are convectively unstalie This has |iquid-gas interface in the flow direction, given . It is
been verified experimentally for larger Reynolds numbers bYocalized in space and periodic in tinteLet us denote the
Liu and Gollub[20] for plates of small inclination to the effective nondimensional wave number of the response in
horizontal. The implication of this property is that the systemthe x direction by
should be analyzed via a spatial-growth theory.

Deissler, Oron, and Lef21] have analyzed the spatial
growth of a weakly nonlinear two-dimensional Kuramoto-
Sivashinsky equation, which contains an extra translation
term, for the evolution of surface waves on a thin film on thewhereh, is the mean depth of the film andis the effective
outside of a vertical, circular cylinder. The curvature of thewavelength. The now-standard long-wavelength approxima-
cylinder favors two-dimensional waves and they find two-tion is made,e<1, and the dependent variables are devel-
dimensional responses unless the forcing contains significa@ped in powers ok. If z=h(x,t) and the interface shape is
nonaxisymmetric content. unknown for the moment, it is straightforward to show that

The objective of the present work is to analyze numeri-
cally the Benney equation in two dimensions in a long flow-
through domain when the waves are continuously forced by

Consider a two-dimensional viscous falling film on a ver-

_27Th0
€= N

@

U~G(h{—42°)+ elpoc(£2°— () +§G*(she*~h*)

a localized disturbance. If the domain is long enough, one +Gh(s2—3h20) +F(& 1) (h{—3%)}, (2
should be able to analyze the wave system fully and compare
the behavior with that seen for temporal growth and spatial W~ — elGh.r2— e[ L3 _ho) = Dach .2
periodicity. This work then tests the foregoing models and 2Ghet [2Pocels¢ £~ Pochel
supplies needed information on the behavior of physical sys- +£G3(hhy) (55— h3¢?) - %Gzh3h§§2
tems at smaliG.

We pose an oscillatory localized disturbance that results +%Gh7§(%§4_h2§2)_%thTth
in a force parallel to the flow direction and independent of
the depth variable. Such a force might be realized by apply- +3F & 7)(hP =303+ 5F(£,1)h 2], (3

ing a body force in the direction by, for example, a local

thermal gradient, which in turn creates either a local buoyWwhereg, £, andr are thex andz coordinates, time scaled on
ancy gradient or a local variation in viscosity or bédssum-  ho, €ho, and ehy/Us, respectively, andi is scaled by the
ing that thermocapillary forces are negligibleVe derive a  Velocity at the surfacels=ghd/v; v is the kinematic viscos-
generalized Benney equation for this case leading to an inty of the fluid. The pressur@ is scaled orpvU¢/hy and
homogeneous evolution equation. We numerically integrate is the density of the fluid.

this equation for films on a vertical plate for fixed forcing If Egs. (2) and (3) are substituted into the kinematic
frequenciesw, describe the behavior obtained, and comparédoundary condition, one obtains, for two-dimensional flows,
this with results of the two-dimensional temporal theory.  an inhomogeneous Benney equation
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FIG. 3. (a) Wave profiles forw = 0.1 in the supercritical region. The first column is the profile shown in the spatial range reached in the
time 7 shown for the correspondin@. The second column shows an interesting section of the spatial range. The third column shows the
power spectrum of the wave measured along the spatial range of the wave. Note that in the figures shown in the third column the abscissa
axis represents the spatial frequency, that is, the waveletthVave profiles in the subcritical region.

h,+Gh?h,+ e[ £G2h%h,+ Sh3h,,,],= — L e[ F (£, 73,

(4)
Here we have used the relation
and
~ghg
=7 (6)
=2 7)
= € 3p 1}2 .

This equation is the starting point of our study. Equation

(4) will be solved numerically on a box of length=L/h,

F(&7)=Ae 2 sinwr, ®
whereA, a >0, L, andw are chosen for various cases.

Consider first the linearized, inhomogeneous equation ob-
tained from Eq.(4) by linearizing about = 1,

h,+Gh+ el £G?h,+ Shy,, .= — 3l F(£,7)]:. (9

After normal modes expg7) are inserted in Eq9), the code
SUPORT[22] is used to solve the resulting ordinary differen-
tial equation on & interval, where the left-hand boundary is
chosen in order to be clear of the forcing. The boundary

conditions used Werb'=h;=0 at both ends of th¢ inter-
val. The values of the fixed parameters &e1 and
€=0.01.

It was found that the Gaster transformati®8] relating
spatial and temporal growth is satisfied, i.e.,

(see Fig. ]; the interface is pinned at each end and forced byl's= — (dw/dk) “I't, where thel” are the growth rates and
F at a station upstream of the region of interest. We shall usk is the wave number. In the present case,
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FIG. 3. (Continued.

The wave number corresponding to the maximum growth
rate isk,, and the transition curve is &t [6], where

Further, the amplitude decreases with frequency while the
critical Reynolds number increases.

The time evolution of the Benney equation has been inys shown in Fig. 2.
vestigated by GjeviK6], who studied the nonlinear interac-  The numerical solution of Eq4) is made in a spatial

tion of spatially periodic, two-dimensional perturbations. A jnterval taken to bé& between— 100 and 108- G, as shown
Fourier expansion of the interface shape was truncated & rig. 1, wherer is the time required for waves to propagate
three terms and gave three coupled ordinary differentiah predetermined distance. The forcing is néar0 and at
equations foih. He showed that the-G plane contains two  poth ends the interface is pinnet= h,=0. The initial con-
curves: a neutral curv; versusG and a transition curve gitions areh=h,=0 at 7=0. Equation(4) is numerically
ks versusG, as shown in Fig. 2. Above the neutral curve, jntegrated by means of finite differences in space and time,
infinitesimal perturbations decay. Below this curve, such disyeepingGA 7/(A £)2<0.01.
turbances grow with time and are predicted to equilibrate to
finite-amplitude traveling waves. Below the transition curve,
the growing disturbances do not equilibrate. These instability
regions correspond to supercritical and subcritical bifurca-
tions, respectively.

From Eq.(10), the cutoff wave number is

= ek 2G2—k?S] . (10)

k2=4k2=2k2,, (12)

Ill. RESULTS AND DISCUSSION

In Figs. 3 and 4 to follow, the left-hand column indicates
the spatial variations ih at fixed times, the middle column
an amplified picture of a region of interest, and the third
column a power spectrum of the whole record at a fixed
time. As the row number increases, so does the Reynolds
numberG. Figures 3a) and 4a) show results of the evolu-

@ 2@

T (11)
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FIG. 4. (a) Wave profiles fore = 0.5 in the supercritical regiorib) Wave profiles in the subcritical region.

tion for ky<k<<k., where in temporal nonlinear theory, dis- number of harmonics increases withuntil irregular behav-
turbances equilibrate to finite-amplitude traveling wavesior is seen. Modulation of the waves is found fox ks and
Figures 3b) and 4b) show the results at corresponding for all G up to w=1. However, an increase @ prevents
points of operation fok<ks, where temporal theory gives observable modulation foB just below linear criticality at
unbounded growth according to the homogeneous Benney=1 5, for G=2.603 atw=1.75, etc. In this initial study,
equation. All the operating points are indicated in Fig. 2. Ingply vertical films are considered and no attempt has been
all the calculations presented belov=0.01, S=1.0, made to test the sensitivity of the results to changes in the

A=0.005, anda=0.05. _ ~ forcing (parametersA anda) or material propertiegparam-
Before presenting the details of the results, we summarlzgterg)

the overall findings. In Fig. 2 the dots represent parameter Figure 3a) shows the wave at time=800 in the region

\{alues where the spatial integration yields equilibrated non; etweenk, andk, asG increases from 0.57 to 0.70 where
linear states. The crosses locate parameter values where thé

generalized Benney equation predicts blowpough the m=0.6223. The first case !s_closekpand the third is very

physical system would not necessarily display this behavior €10S€ t0 and abovks. Here it is easy to observe the nonlin-
One sees that up to a valug, between 1.0 and 1.5, the €& evolution. The crgsts saturate into a modulated wave with

spatial growth case parallels the temporal growth case in thdW0 or three harmonics, as shown clearly f8r=0.7. Note

the equilibrated states occur fg<k<k.. Above w;, o is that asG increases the wavelengths of both the principal

so large that in this region the evolution equation sometime¥ave and the modulation wave increase. Figufe) Shows

or always predicts blowup. The states can be pure harmonigsults ak< ks. For G=0.8 it is shown that the harmonics

waves or waves with two or more basic frequencies. Thend the modulation of the wave appear further downstream

harmonics will appear as the Reynolds number increases. Ftinan before. FoG=0.8 the wave still saturates and the har-

small frequencies the harmonics appear Kerks, but as monics are well defined. A& is increased to 1.5 a larger

w is increased, harmonics will appear ig<k<k.. The number of harmonics appear and the power spectrum shows
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FIG. 4. (Continued.

a broadband section. Whea is increased to 2.0, a great  In Fig. 4b) it is shown that three harmonics appear just
number of harmonics appear, the flow becomes irregular abelow kg whenG=1.73. This wave profile still shows satu-
ter some distance from the origin, and the power spectrumation. ForG=2.5 there are still three harmonics, but after
shows a broadband structure. some time its amplitude grows so fast that saturation is not
Note that in all the graphs of Fig. 3 the wave crests with-attained. Therefore, the wave profile is presented only for
out harmonics occupy a longer distance from the origin as=200. ForG=4 six harmonics appear, but the growth rate
the Reynolds number increases and, at the same time, dueitso large that only the wave far=120 is given. The power
the nonlinear evolution the number of wave harmonics in-spectrum for the wave witle=4 is a broadband spectrum
creases. This is due to the dual role played®ysince it is  that shows its chaotic structure.
simultaneously both the phase velocity and the flow rate. For larger flow rate and frequency blowup might be even-
Figures 4a) and 4b) correspond tav=0.5. Figure 4a)  tually expected since the basic assumptions of small inertial
corresponds to waves in the ranGe = 1.3, neark., to  effects and of surface slopes will, at some point in space or
G=1.55, neak,. HereG,,=1.3915. The time is set to 360 time, be violated. One must resort, then, to direct numerical
units and the last snapshot of the wave is presented. At thisolution of the governing equations. Additional figures
frequency, two harmonics appear just beléw, but just showing the wave development for longer times and higher
abovek, we do not find three harmonics, as in the case offrequencies and its development in time at two fixed points
Fig. 3@). The early perturbations in the three pictures arein space are given by ®alos-Orozcoet al. [24]; see also
very large compared to that of the equilibration because th®avalos-Orozceet al. [25].
nonlinear region appears immediately at such high frequency
of oscillation and due to the relatively small phase speed.
There is again wave modulation, but it is not easy to see for
G=1.3. Modulation is easy to recognize for large Reynolds In this paper we investigated the two-dimensional stabil-
numbers, as in the other wave profiles of Figs)4nd 4b). ity of a fluid layer flowing down a vertical plate. The analy-

IV. CONCLUSION
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sis is based on an inhomogeneous Benney equéfiif) in in the experiment in the same parameter range as predicted
which the inhomogeneous term represents the forcing due toy the IBE. In a recent paper Liu and Gollip0] obtained
a steadily oscillating localized surface shear stress. Througbxperimental results for very small angle of inclination of the
that term, the flow is controlled by the frequency of oscilla- plate in order to understand the mechanism leading to the
tion w. This equation is investigated in the parameter plandransition to spatio-temporal chaos. They concluded that
(k,G) divided in three main regions of stabilify,<k, su-  sideband and subharmonic instabilities, which occur at high
percriticality ke<<k<<k. and subcriticalityk<<k;. and low frequencies, respectively, are involved in the transi-
The results presented in this paper show that the time dfon to chaos.
validity of the IBE depends on the imposed frequency and As shown in our numerical results, an increas&iteads
the Reynolds number. It is shown that, for any frequency ofto an increase in the number of harmonics. Therefore, due to
oscillation, above a criticas the numerical solution blows their mutual nonlinear interaction, some of the above men-
up after some time which is shorter whénwas larger. For tioned mechanisms may lead in time and space to the chaotic
small frequencies this behavior arose forks. However, behavior observed.
for frequencies above a critical one.;, nonsaturating be-
havior was also found inside the supercritical region
ke<k<K,. ACKNOWLEDGMENTS
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