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Nonlinear instability of a fluid layer flowing down a vertical wall
under imposed time-periodic perturbations
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We investigate the nonlinear instability of a fluid layer flowing down a vertical wall and subjected to a
continuously imposed oscillatory pressure gradient. In each case the frequencyv of oscillation is fixed. The
flow instability is investigated numerically by means of the Benney equation with a space- and time-dependent
inhomogeneous term. The wave evolution is followed in space and time for different Reynolds numbers. It is
found that for a range of wave numbers near critical, saturation occurs only for frequenciesv smaller than a
critical value. For larger frequencies, the waves grow unboundedly everywhere. Forv smaller than that value,
subharmonics occur between the curves of criticality and subcriticality. An increase in Reynolds number leads
the instability to the region of subcriticality where wave subharmonics appear for all the frequencies investi-
gated in this paper. Larger Reynolds numbers give additional subharmonics until a magnitude is reached, at
which the flow becomes chaotic. As the frequency increases above a critical value, subharmonics are more
difficult to find in the supercritical region.@S1063-651X~97!06701-9#

PACS number~s!: 47.20.Ky, 47.35.1i, 47.52.1j
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I. INTRODUCTION

The flow in liquid layers down walls has many industri
applications and has intrinsic complex behavior that is
challenge to describe. Direct numerical simulation of the
steady Navier-Stokes equations to analyze the thin-film
namics@1,2# is costly, but the results can be used as a ben
mark for other approaches. In the temporal theory Joo
Davis @3# showed via the Benney equation that all equ
brated two-dimensional finite-amplitude waves on a verti
plate are unstable to three-dimensional disturbances.

Some restrictions are important to simplify the governi
equations. The long-wavelength assumption by means
small parametere is one of them, which implicitly says tha
the surface slope everywhere is small. When this restric
is no longer satisfied, the integration of the evolution eq
tion must be stopped. Other restrictions are that the Reyn
numberG is of unit order and the surface tensions is large.
The applicability of these restrictions has been considered
Frenkel@4#.

Benney@5#, as well as those who followed~e.g., Gjevik
@6#, Nakaya@7#, Krishna and Lin@8#, Pumiret al. @9#, Chang
@10#, Nakaya @11#, Joo et al. @12,13#, and Joo and Davis
@3,14#, and Frenkel@4#!, derived a strongly nonlinear equa
tion valid for e→0, eG5O(e), ands5O(e22). This equa-
tion has been used frequently as a device for studying th
surface wave instabilities or coupled to other instabilities d
to thermocapillarity, evaporation, etc.~see e.g.,@12,15#!.

When the Benney equation in two dimensions has b
integrated on spatially periodic domains, two ranges of w
numberk andG are found: one corresponds to supercritic
551063-651X/97/55~1!/374~7!/$10.00
a
-
-
h-
d

l

a

n
-
ds

y

se
e

n
e
l

bifurcations that give saturation and hence permanent fin
amplitude structures and the other corresponds to subcri
bifurcation and unlimited~nonsaturated! growth of distur-
bances. In the latter case there appears to be blowup u
certain conditions in a finite time, indicating that the assum
tion of small surface slopes is no longer valid. This illustra
the danger in extrapolating the evolution equation solutio
beyond their limits of validity. However, Krisnamoorth
et al. @2# find that there is quantitative agreement with dire
numerical simulations in such cases whenG is smaller than
4 or 5, a range of importance to studies of thin-film break
and dryout@15#. WhenG is larger, such quantitative agree
ment is lost.

Sivashisky and Michelson@16# showed that in the weakly
nonlinear limit the Benney equation reduces to t
Kuramoto-Sivashinsky~KS! equation, which displays no
blowup but whose surface amplitude is restricted to a sm

FIG. 1. Sketch of the spatial interval used in the numeri
analysis of Eqs.~4! and ~9!. F(j,t) is applied locally around the
origin. In this paper it has a bell shape with a maximum at
origin, which oscillates in time.
374 © 1997 The American Physical Society
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55 375NONLINEAR INSTABILITY OF A FLUID LAYER . . .
FIG. 2. Graph ofk vsG for different frequen-
ciesv. kc is the critical wave number for linea
instability andks is the transition value separatin
supercritical and subcritical bifurcations as foun
by Gjevik @6#. The supercritical region is betwee
the line of kc and ks . The subcritical region is
below the lineks . Dots and crosses denote re
gions of equilibration and blowup in our spatia
theory, respectively.
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fraction of the mean film thickness. Thus the Benney eq
tion, where it is valid, can give information unavailable fro
the KS theory.

If one wishes to describe only quantitatively waves
Reynolds numbers where many experiments on complex
namics are examined, say, 20,G, 100, one must include
inertia at leading order. This can be done approximately
ing Karman-Pohlhausen methods~see e.g.,@17–19#!. With
lubrication theory assumptions it has been found that all
turbances that grow are convectively unstable@3#. This has
been verified experimentally for larger Reynolds numbers
Liu and Gollub @20# for plates of small inclination to the
horizontal. The implication of this property is that the syste
should be analyzed via a spatial-growth theory.

Deissler, Oron, and Lee@21# have analyzed the spatia
growth of a weakly nonlinear two-dimensional Kuramot
Sivashinsky equation, which contains an extra transla
term, for the evolution of surface waves on a thin film on t
outside of a vertical, circular cylinder. The curvature of t
cylinder favors two-dimensional waves and they find tw
dimensional responses unless the forcing contains signifi
nonaxisymmetric content.

The objective of the present work is to analyze nume
cally the Benney equation in two dimensions in a long flo
through domain when the waves are continuously forced
a localized disturbance. If the domain is long enough, o
should be able to analyze the wave system fully and comp
the behavior with that seen for temporal growth and spa
periodicity. This work then tests the foregoing models a
supplies needed information on the behavior of physical s
tems at smallG.

We pose an oscillatory localized disturbance that res
in a force parallel to the flow direction and independent
the depth variable. Such a force might be realized by ap
ing a body force in thex direction by, for example, a loca
thermal gradient, which in turn creates either a local bu
ancy gradient or a local variation in viscosity or both~assum-
ing that thermocapillary forces are negligible!. We derive a
generalized Benney equation for this case leading to an
homogeneous evolution equation. We numerically integr
this equation for films on a vertical plate for fixed forcin
frequenciesv, describe the behavior obtained, and comp
this with results of the two-dimensional temporal theory.
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II. FORMULATION

Consider a two-dimensional viscous falling film on a ve
tical plate. The fluid is Newtonian and of constant dens
The gas-liquid interface has a surface tensions and the gas
bounding the interface is considered passive.

Let the positivex and z directions be given by the flow
direction and normal to the plate into the liquid, respective
All quantities are taken to be independent ofy.

In a fixed neighborhood in space, a force is applied to
liquid-gas interface in the flow direction, given byF. It is
localized in space and periodic in timet. Let us denote the
effective nondimensional wave number of the response
the x direction by

e5
2ph0

l
, ~1!

whereh0 is the mean depth of the film andl is the effective
wavelength. The now-standard long-wavelength approxim
tion is made,e!1, and the dependent variables are dev
oped in powers ofe. If z5h(x,t) and the interface shape i
unknown for the moment, it is straightforward to show th

u;G~hz2 1
2 z2!1e$p0j~

1
2 z22hz!1 1

6G
2~ 1

4hz42h4z!

1Ght~
1
6 z32 1

2h
2z!1F~j,t!~hz2 1

2 z2!%, ~2!

w;2e 1
2Ghjz

22e2@ 1
2p0jj~

1
3 z32hz!2p0jhjz

2

1 1
12G

2~hhj!j~
1
10z52h3z2!2 1

4G
2h3hj

2z2

1 1
4Ghtj~

1
6 z42h2z2!2 1

2Ghhthjz
2

1 1
2Fj~j,t!~hz22 1

3 z3!1 1
2F~j,t!hjz

2#, ~3!

wherej, z, andt are thex andz coordinates, time scaled o
h0, eh0, and eh0 /Us , respectively, andu is scaled by the
velocity at the surfaceUs5gh0

2/n; n is the kinematic viscos-
ity of the fluid. The pressurep is scaled onrnUs /h0 and
r is the density of the fluid.

If Eqs. ~2! and ~3! are substituted into the kinemati
boundary condition, one obtains, for two-dimensional flow
an inhomogeneous Benney equation
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FIG. 3. ~a! Wave profiles forv 5 0.1 in the supercritical region. The first column is the profile shown in the spatial range reached
time t shown for the correspondingG. The second column shows an interesting section of the spatial range. The third column sho
power spectrum of the wave measured along the spatial range of the wave. Note that in the figures shown in the third column the
axis represents the spatial frequency, that is, the wavelength.~b! Wave profiles in the subcritical region.
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15G

2h6hj1S̄h3hjjj#j52 1
3 e@F~j,t!h3#j .

~4!

Here we have used the relation

p0523S̄hjj ~5!

and

G5
gh0

3

n2
, ~6!

S̄5e2
s

3rn2
. ~7!

This equation is the starting point of our study. Equati
~4! will be solved numerically on a box of lengthl5L/h0
~see Fig. 1!; the interface is pinned at each end and forced
F at a station upstream of the region of interest. We shall
y
e

F~j,t!5Ae2aj2sinvt, ~8!

whereA, a .0, L, andv are chosen for various cases.
Consider first the linearized, inhomogeneous equation

tained from Eq.~4! by linearizing aboutz 5 1,

ht
81Ghj

81e@ 2
15G

2hj
81S̄hjjj

8 #j52 1
3 e@F~j,t!#j . ~9!

After normal modes exp(ivt) are inserted in Eq.~9!, the code
SUPORT@22# is used to solve the resulting ordinary differe
tial equation on aj interval, where the left-hand boundary
chosen in order to be clear of the forcing. The bound
conditions used wereh85hj

850 at both ends of thej inter-
val. The values of the fixed parameters areS̄51 and
e50.01.

It was found that the Gaster transformation@23# relating
spatial and temporal growth is satisfied, i.e
GS52(]v/]k)21GT , where theG are the growth rates an
k is the wave number. In the present case,
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FIG. 3. ~Continued!.
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GT5ek2@ 2
15G

22k2S̄# . ~10!

Further, the amplitude decreases with frequency while
critical Reynolds number increases.

The time evolution of the Benney equation has been
vestigated by Gjevik@6#, who studied the nonlinear interac
tion of spatially periodic, two-dimensional perturbations.
Fourier expansion of the interface shape was truncate
three terms and gave three coupled ordinary differen
equations forh. He showed that thek-G plane contains two
curves: a neutral curvekc versusG and a transition curve
ks versusG, as shown in Fig. 2. Above the neutral curv
infinitesimal perturbations decay. Below this curve, such d
turbances grow with time and are predicted to equilibrate
finite-amplitude traveling waves. Below the transition curv
the growing disturbances do not equilibrate. These instab
regions correspond to supercritical and subcritical bifur
tions, respectively.

From Eq.~10!, the cutoff wave number is

kc
25

2

15

G2

S̄
. ~11!
e

-

at
l

-
o
,
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-

The wave number corresponding to the maximum grow
rate iskm and the transition curve is atks @6#, where

kc
254ks

252km
2 , ~12!

as shown in Fig. 2.
The numerical solution of Eq.~4! is made in a spatia

interval taken to bej between2100 and 1001Gt, as shown
in Fig. 1, wheret is the time required for waves to propaga
a predetermined distance. The forcing is nearj50 and at
both ends the interface is pinned,h5hj50. The initial con-
ditions areh5hj50 at t50. Equation~4! is numerically
integrated by means of finite differences in space and ti
keepingGDt/(Dj)2,0.01.

III. RESULTS AND DISCUSSION

In Figs. 3 and 4 to follow, the left-hand column indicat
the spatial variations inh at fixed times, the middle column
an amplified picture of a region of interest, and the th
column a power spectrum of the whole record at a fix
time. As the row number increases, so does the Reyn
numberG. Figures 3~a! and 4~a! show results of the evolu



378 55L. A. DÁVALOS-OROZCO, S. H. DAVIS, AND S. G. BANKOFF
FIG. 4. ~a! Wave profiles forv 5 0.5 in the supercritical region.~b! Wave profiles in the subcritical region.
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tion for ks,k,kc , where in temporal nonlinear theory, di
turbances equilibrate to finite-amplitude traveling wav
Figures 3~b! and 4~b! show the results at correspondin
points of operation fork,ks , where temporal theory give
unbounded growth according to the homogeneous Ben
equation. All the operating points are indicated in Fig. 2.
all the calculations presented below,e50.01, S̄51.0,
A50.005, anda50.05.

Before presenting the details of the results, we summa
the overall findings. In Fig. 2 the dots represent param
values where the spatial integration yields equilibrated n
linear states. The crosses locate parameter values wher
generalized Benney equation predicts blowup~though the
physical system would not necessarily display this behavi!.

One sees that up to a valuevc , between 1.0 and 1.5, th
spatial growth case parallels the temporal growth case in
the equilibrated states occur forks,k,kc . Abovevc , v is
so large that in this region the evolution equation sometim
or always predicts blowup. The states can be pure harm
waves or waves with two or more basic frequencies. T
harmonics will appear as the Reynolds number increases
small frequencies the harmonics appear fork,ks , but as
v is increased, harmonics will appear inks,k,kc . The
.
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e
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-
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number of harmonics increases withG until irregular behav-
ior is seen. Modulation of the waves is found fork, ks and
for all G up to v51. However, an increase ofv prevents
observable modulation forG just below linear criticality at
v51.5, forG<2.603 atv51.75, etc. In this initial study,
only vertical films are considered and no attempt has b
made to test the sensitivity of the results to changes in
forcing ~parametersA anda) or material properties~param-
eter S̄).

Figure 3~a! shows the wave at timet5800 in the region
betweenkc andks asG increases from 0.57 to 0.70 wher
Gm50.6223. The first case is close tokc and the third is very
close to and aboveks . Here it is easy to observe the nonlin
ear evolution. The crests saturate into a modulated wave
two or three harmonics, as shown clearly forG50.7. Note
that asG increases the wavelengths of both the princip
wave and the modulation wave increase. Figure 3~b! shows
results atk, ks . ForG50.8 it is shown that the harmonic
and the modulation of the wave appear further downstre
than before. ForG50.8 the wave still saturates and the ha
monics are well defined. AsG is increased to 1.5 a large
number of harmonics appear and the power spectrum sh



55 379NONLINEAR INSTABILITY OF A FLUID LAYER . . .
FIG. 4. ~Continued!.
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a broadband section. WhenG is increased to 2.0, a grea
number of harmonics appear, the flow becomes irregular
ter some distance from the origin, and the power spect
shows a broadband structure.

Note that in all the graphs of Fig. 3 the wave crests wi
out harmonics occupy a longer distance from the origin
the Reynolds number increases and, at the same time, d
the nonlinear evolution the number of wave harmonics
creases. This is due to the dual role played byG, since it is
simultaneously both the phase velocity and the flow rate

Figures 4~a! and 4~b! correspond tov50.5. Figure 4~a!
corresponds to waves in the rangeG 5 1.3, nearkc , to
G51.55, nearks . HereGm51.3915. The time is set to 36
units and the last snapshot of the wave is presented. At
frequency, two harmonics appear just belowkc , but just
aboveks we do not find three harmonics, as in the case
Fig. 3~a!. The early perturbations in the three pictures a
very large compared to that of the equilibration because
nonlinear region appears immediately at such high freque
of oscillation and due to the relatively small phase spe
There is again wave modulation, but it is not easy to see
G51.3. Modulation is easy to recognize for large Reyno
numbers, as in the other wave profiles of Figs. 4~a! and 4~b!.
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In Fig. 4~b! it is shown that three harmonics appear ju
below ks whenG51.73. This wave profile still shows satu
ration. ForG52.5 there are still three harmonics, but aft
some time its amplitude grows so fast that saturation is
attained. Therefore, the wave profile is presented only
t5200. ForG54 six harmonics appear, but the growth ra
is so large that only the wave fort5120 is given. The power
spectrum for the wave withG54 is a broadband spectrum
that shows its chaotic structure.

For larger flow rate and frequency blowup might be eve
tually expected since the basic assumptions of small ine
effects and of surface slopes will, at some point in space
time, be violated. One must resort, then, to direct numer
solution of the governing equations. Additional figur
showing the wave development for longer times and hig
frequencies and its development in time at two fixed poi
in space are given by Da´valos-Orozcoet al. @24#; see also
Dávalos-Orozcoet al. @25#.

IV. CONCLUSION

In this paper we investigated the two-dimensional sta
ity of a fluid layer flowing down a vertical plate. The analy
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sis is based on an inhomogeneous Benney equation~IBE! in
which the inhomogeneous term represents the forcing du
a steadily oscillating localized surface shear stress. Thro
that term, the flow is controlled by the frequency of oscil
tion v. This equation is investigated in the parameter pla
(k,G) divided in three main regions of stabilitykc,k, su-
percriticality ks,k,kc and subcriticalityk,ks .

The results presented in this paper show that the tim
validity of the IBE depends on the imposed frequency a
the Reynolds number. It is shown that, for any frequency
oscillation, above a criticalG the numerical solution blows
up after some time which is shorter whenG was larger. For
small frequencies this behavior arose fork,ks . However,
for frequencies above a critical one,vc , nonsaturating be-
havior was also found inside the supercritical regi
ks,k,kc .

The nonsaturating behavior is unphysical, but gives
limitations on the magnitudes of the parameters involved
the problem.

We also found evidence that irregular behavior bef
blowup occurred. It is possible that this behavior can app
s
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in the experiment in the same parameter range as pred
by the IBE. In a recent paper Liu and Gollub@20# obtained
experimental results for very small angle of inclination of t
plate in order to understand the mechanism leading to
transition to spatio-temporal chaos. They concluded t
sideband and subharmonic instabilities, which occur at h
and low frequencies, respectively, are involved in the tran
tion to chaos.

As shown in our numerical results, an increase inG leads
to an increase in the number of harmonics. Therefore, du
their mutual nonlinear interaction, some of the above m
tioned mechanisms may lead in time and space to the cha
behavior observed.
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